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Abstract

The modification of passing guiding center orbits of 3.5 MeV alpha particles and 45 keV
protons in the presence of global Alfvén eigenmodes (GAE’s) is studied in modular advanced
stellarators. It is found that if resonances between particles and waves occur, drift surfaces form
a set of island structures. The mode numbers of the perturbations, which are dangerous for
the energetic particle confinement, are discussed for two particular stellarators (Helias reactor
and Wendelstein 7-AS). The perturbation amplitudes corresponding to the onset of orbit
stochasticity are studied numerically. The coefficient of the collisionless stochastic diffusion is
estimated using the island width derived analytically.

*Permanent address: Scientific Center "Kurchatov Institute”, Moscow, Russia




Introduction

The confinement of fusion alpha particles and NBI ions in toroidal systems with
magnetic confinement is a crucial issue on the way to a thermonuclear reactor. The
3.5 MeV alphas provide for the self-sustaining thermonuclear reactions in plasma
and the energetic NBI ions serve as one of the tools for plasma heating and non-
inductive current drive in tokamaks.

Confinement properties of the both tokamak and stellarator configurations re-
garding the energetic particles were investigated since the early '70s by many au-
thors. At the beginning of '80s it was réa,l_ized that small rippling due to finite
number of toroidal field coils in tokamaks can cause stochastization of the fast par-
ticle orbits and, consequently, the enhanced particle transport. This topic was in
detail investigated during the following decade.

Another source of disturbing the magnetic field is plasma MHD activity. Last
time the attention was attracted to the Alfvén eigenmodes being observed in the
tokamak and, recently, stellarator plasmas. These modes can be generated by the
super-thermal thermonuclear alpha particles in a reactor and by the NBI ions as
well in modern machines. Exciting this instability the particles themselves interact
with the perturbed by the modes magnetic field. Experimental observations carried
oul on ﬁo]camaks (1, 2] have shown that the essential fraction of the NBI ions can be
expelled from the plasma due to TAE modes. The experiments on the stellarator
Wendelstein-TAS (3] have not demonstrated, however, any enhancement of the fast
ion losses in the presence of the Alfvén-like perturbations. The theory of the stochas-
tic transport of the MeV passing ions induced by the magnetic perturbations of the
Alfvén-type was recently developed [4] for tokamaks. Numerically this problem was
investigated in Ref. [5].

The purpose of the present work is to analyze the influence of the Alfvén eigen-
modes on the fast particle orbits in the particular stellarator configuration.

The conditions of arising of the magnetic perturbations themselves are outside of
the scope of this work. It is supposed that the waves are exist as unchangeable by
the particle-wave interaction background.

The paper is structured as follows: in Sec. 1 the Hamilton’s equation of the parti-




cle movement are derived; the model for the stellarator magnetic field is represented
in Sec. 2; the main types of the particle orbits are briefly discussed in Sec. 3; on the
base of the local condition for the resonance interaction particle-wave the resonant
mode numbers of the perturbation are found in Sec. 4; Sec. 5 deals with the reso-
nant particle orbits in the Helias reactor and Sec. 6 with that of Wendelstein-7AS;
the islands width and the characteristic time of the motion around the island are

calculated in Sec. 7 and the results are summarized and discussed in Sec. 8.

1 Equations of motion

We use the guiding center equations of particle motion, since the frequencies of
the magnetic field perturbation induced by the Alfvén modes are lower, than the
cyclotron frequency.

The cyclic frequency of an Alfvén wave in a toroidal system can be expressed as
w = kjjv4, where vy is the Alfvén velocity vy = B/+/rnm; and k) is the parallel
to the magnetic field wave vector, kj = (k-B)/B. This frequency is much lower,
than the ion cyclotron frequency w, = ZeB/mec, what provides applicability of the
guiding center approach for the investigating of the particle-wave interaction.

To derive the Hamilton’s equations of motion we start with the guiding center

Lagrangian [6):
L(%, %,1) = %m u(x, %0 + S % A1)~ e®(x, 1)~ uB(x,1), (1)

where X is the position of the guiding center, X is its velocity, u is the parallel to
the magnetic field particle velocity u = (B-x)/B, A is the vector potential, ® is
the potential of the plasma electric field. Further, we assume the particle maghetic
moment gt = mv} /2B to be conserved, where B denotes the magnetic field strength
m the plasma.

The Lagrangian (1) describes the motion of the guiding center including the
mirror force and all the conventional perpendicular drifts. Now, we construct a

HMamilton’s function defining, first, the momenta:
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The guiding center Hamiltonian immediately follows:
dz' - 1

H(p,x,1) = pi 7 = L(x,%,1) = > mup,x, ) + puB(x, ) + e (x,8)  (2)
We use in this paper the so-called canonical coordinates [7] r, 0, ¢, in which the
radial components of the magnetic field B, and vector potential A, are equal to zero.
This sel of coordinates differs from the usual toroidal one only in determination of
the poloidal variable 0. The last deviates from the poloidal angle 6 by a quantity of
order I3,/B. When the flux surfaces exist, the canonical coordinates are a special
casc of [lux coordinates. Since the coordinate transformation preserves toroidal

topology and the angle variable 6 is periodic in the angles, one can express the

perturbation of the vector potential induced by the Alfvén wave in the usual way:
ﬁ” = An(¥) cos(—nep + mb — wt), (3)

where m, n are respectively the poloidal and toroidal mode numbers of the wave
and this potential has the sole component parallel to the magnetic field. The tilde
of the poloidal variable § is dropped in the following.

In the canonical coordinates used the radial component p, = 0, then the remain-

ing components are:
e -~
po = mubg+ - (Ag + A)by)
e %
Po = mub,+ = (A + Ayby), (4)

where by, are the components of the unit vector b = B/B; Ay, are the components
of the unperturbed vector potential and the perturbation itself is introduced through

/1”. We 1iotice that if ﬁ” is normalized such that

than the perturbing magnetic field induced by the wave can be determined as fol-
lowing [8]:

6B =V x aB,
thus & is a scale factor to 6B.

Experimentally measured variations of the magnetic field caused by the Alfvén-
like MHD activity do not exceed the value §B/B ~ 10~%, That is why & is a-small
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parameter allowing us to reduce the above equations (4). Comparing the terms in
the first of them, it is seen that the perturbation 1‘1”139 can be neglected being smaller
by a factor &¢/2 than the term Ay. The first term mub, relates to the second one
as 2p||/ R and can be also dropped in our case.

Thus, the momenta (4) take the following form:
e
e = - A
c
e ~
P = mub, + 2 (Ap + Ajjby), (5)

To invert these equations in order to obtain the parallel velocity as a function of
the momenta and coordinates it is needed to exclude the components of the unper-
turbed vector potential Ag,. For this sake we use, first, the rotational transform +

defined as
& __dA,
Cdy - dAg’
where ( is the poloidal and % is the toroidal magnetic flux. The sign minus is

explained by the fact that the coordinate system used is left-handed. Since the
vector potential is the function of the magnetic surface, the last equation can be

resolved,
¥
A=A j £ Ay dip,
where ' = d¢[dy.
Now, substituting the first equation (5) into the second one and excluding A,

one obtains p,, : %
€ ~
P, = mub, — +pg + / ' pgdip + : A)by,
and, after inverting, the required expression for the parallel velocity:

Py + +po — [V 'po dip — (e/c) Allb
mb,

iU =

II' we substitute this expression into the Hamilton’s function (2), we obtain the
required I[lamiltonian H(pg, py, ¥, 0,¢,t). To reduce the number of variables to two
pairs we notice that the flux 9 can be replaced in principle by ps with the help of

the first equation (5). Namely,

fA,,de—zwA“b) /BdS Bor <r>?,
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where €' is the contour @ = const lying on the magnetic surface, <7 > is the average
radius of this magnetic surface and By is the magnetic field on the axis. Taking
into account that the plasma electric potential is constant on a magnetic surface

® = ®(yp(<r>)), we rewrite the guiding center Hamiltonian in the final form:

1

r ets 2
H(po,por0,0,0) = o5 (P:.a + <po —f <'podr — - Allbw) +uB(pe, 0, ) + e ®(ps).
&5 ¥

We have dropped <r> and replaced it with r keeping in mind that it is not a real
radius but some averaged one. Dealing with the configurations with the large aspect
ratio 2/a ~ 10, we take b, = B, /B equal to the major radius of the torus R.

The dependencies +(r), B(r,0,¢) and ®(r), where
2 2c
(f E Ps,
characterize the particular magnetic configuration and, being specified, together

with AI! fully describe the problem considered.

Finally, we write out explicitly the equations of motion of a single particle:

i — [Teppdr — & A 841 _ 9B

% 55 itk (p.,-l—-rpg /;pgdr cA"R) a0 —“ a0

e teal L i N a0

ber's oan (p G iy / SR 6T cA“R) ) & Bgci (6)
el iy < iyR) L dhing e 00 O
Yo mi? (p¢+#pe—/ i CA"R ({ ¢ Opg Ops +66P8
! 1 7 e -

(== 1_71R2 (;p‘p-{-{pg—j _gfpa d’r—EA”R) 5

Actually, the variable py is a measure of the radial distance of the particle guiding

center from the plasma axis.

2 Model magnetic field

Common representation of a stellarator magnetic field strength in Fourier compo-

nents is

Bg = Coo + Y Cmy cos(Mmep) cos(16) + Y Sy sin(Mmyp) sin(16), (7)
0

where ¢, 0 are toroidal and poloidal angle-like coordinates, m, n are the numbers
of the Fourier harmonics and M is the number of the toroidal periods (in our case

M = 5). All the coefficients Cp, i, S, can be radially dependent.
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Deriving the equations of motion (6) we have used the canonical system of coor-
dinates, which differs from that typically used in the Fourier decomposition above.
But the periodical in angles structure of the both of them makes possible to use
formula (7) in canonical coordinates. It must be kept in mind that, strictly speak-
ing, the radial profiles of the Fourier coefficients should be now recalculated for the
canonical coordinates. However, the difference for the passing orbits seems not to
be principle.

For the Helias configuration considered here we may retain only a few of the
terms in (7) to give satisfactory model of B which keeps the main features of the
magnetic field. The typical set of the coefficients for the reactor case is represented in
Ilig. 1a [9]. Comparison of our model, containing the following non-zero coefficients:
CU,O_, Cos, Cip, C11 and S;; with the results of the calculation of B(6, )

with the {ull set of Fourier harmonics is shown in Fig. 2.

r=const

The components Cy;, Sy describe the main helical dependence of the magnetic
field strength. The modular structure of the magnetic field is represented by the
term Cp,; cos(M¢) and the toroidicity by the term Cj g cos(10). The last two terms
can cause particle trapping as well as the main helical well. The coefficient Cpo ~ 1,
whicl is not represented on the plot, depends only slightly on the plasma radius
when plasma /3 is small. At maximal achievable plasma 8 ~ 0.04 —0.05, as show the
equilibrium calculations, the magnetic field on the axis is reduced due to diamagnetic
effect (by about 10 % of its vacuum value). This effect changes the radial dependence
of the coefficient Co,o-

Due to its simplicity the Helias configuration provides an interesting object for
analysis and, moreover,rsome details of particle motion and the main orbit types
can be understood without numerical calculations.

The magnetic configuration realized in the second case considered, namely of
Wendelstein-TAS, is not so simple as the previous one. The number of Fourier
harmonics contributing to the value B is relatively great (s. Fig. 1b). To shorten the
computer time we have curtailed the number of coefficients up to m =0,...,4; | =
0,...,2. The radial dependent coefficients themselves were taken from the equilibrium

calculations [10]. Figure 3 shows the model field strength B used in our calculations




concerning NBI ions in W-TAS and the same value obtained from the equilibrium
code VMEC.
Of course, the model of the magnetic field strength can be naturally extended to

any number of Fourier harmonics, but that affects the required computer time.

3 Particle orbit types

In order better to understand the following results concerning the particle-wave
interaction we briefly discuss in this section the main types of particle orbits on the
example of the Helias reactor.

Since the mirror forces arising from the space inhomogeneity of the magnetic field
Logether with the motion along the field line determine basically the particle orbits,
it is helplul for the orbit analysis to use the maps of the magnetic field strength via
the angle coordinates @, ¢. Such a map presented in Fig. 1a should be supplemented
with a field line which is straight at the constant radial label r. :

Inside one of the field periods there are seen a well and two hills. A passing
particle with g = 0 follows the field line and does not change its parallel velocity. If,
however, the particle velocity has a perpendicular to the magnetic field component
v)|, the drifts force the guiding center to diverge from the field line in poloidal
direction. The particles with large perpendicular velocity can be reflected from the
regions with the sufliciently strong magnetic field and become trapped. In our case
such deeply trapped particles can be blocked in the region adjacent to the point
0 =m, o =7 ("central well”).

Another sort of the orbits are those which are reflected in the region between
the separatrix surrounding the central well ("first separatrix”) and the next one
surrounding two hills (*second separatrix”). These orbits, being trapped toroidally
but not poloidally, undergo poloidal precession due to the conventional drifts which
nature we do not discuss now in details.

There are also the orbits that are able to surmount the barrier of the second
separatrix (actually, its field strength) but cannot pass the hill over its top. These
particles are not isolated toroidally, they run over the passings from one field period

to another.. Helically moving around the torus and shifting poloidally they finally




meet a region with a field strength high enough for them to be reflected. The radial
width of this kind of orbits is the largest. 7

So, for the magnetic configuration considered, there are four main types of the
particle orbits: a) pure passing orbits; b) trapped in the central well; c) toroidally
trapped inside the first separatrix and d) transit or superbanana orbits.

Actually, these types do not cover the whole set of possible orbits. Under some
circumstances the drifts can detrap, for example, the orbits of the type b), but this

classification is useful as a first step in investigating of the particle behaviour.
4 Particle-wave resonances

We discuss now the resonance condition for the fast particles interacting with the
Alfvén-type wave. The main purpose of the following treatment is to predict the
dangerous wave mode numbers, which interact with the energetic particles, modify
their orbits substantially and can lead to collisionless losses.

Since the amplitude of the magnetic field perturbation produced by the wave is
much lower than the background equilibrium field, it is evident to expect that the
influence of the wave on the particle orbit is the strongest in the resonance case.
The resonance will be achieved locally if the following condition is satisfied:

w—kj—kivyg =0, (8)
where w = kjvy is the cyclic frequency of the Alfvén wave, v, is the drift velocity
and kjy = (m+ —n)/R, kL = m/r are the parallel and perpendicular components of
the wave vector.

Let us consider the last equation in more details. In the absence of the drifts
(va = 0) the resonance condition can be satisfied only if v = v4. ! The Alfvén
velocity in the reactor is lower, than the alpha particle velocity, so that vs /v, ~ 0.4
at the plasma axis. In W-TAS this relation for the 45 keV protons is opposite,
namely 1 < vq/v, < 2. That means that the the poloidal drifts play an important
role in achieving of the particle-wave resonances.

Passing particles keep the sign of their parallel velocity unchanged, moreover, the

magnitude of v) itself changes along the orbit only weakly, thus one can replace the

!'We do not consider here sidebands resonances




local velocity v)| in equation (8) with some mean value <vj;> . On the other hand,
the orbits of the trapped particles are characterized with the periodical changing of
their direction of movement and the transition from the local condition (8) to some
"averaged” one is not so obvious.

Figure 4 illustrates graphically the resonance of a co-going particle with the wave
with m, n < 0. It is seen that such a resonance could not be achieved if the particle
did not drift poloidally.

Equation (8) can be rewritten in the following normalized form:

e (L e ]
e 1 ,uB/E+|

me—n|r v’

5

where o = sign(vB), o} = sign(k)) and the poloidal drift velocity vy also contains
a sign. We emphasize that the resonance condition considered is not used to find
the exact resonances but serves rather as a simple tool to facilitate the search for
possible resonances.

The latter equation contains free parameters g, o, m, n and variable r. If the
drift velocity vy is replaced by its mean value, the dependence on angle coordinates
vanishes. Under these assumptions the resonance equation can be solved numerically
il the drifts are specified.

We shall consider here two drifts, namely those caused by the radial gradient of
the mag.netic field and by the plasma electric field. The first was found [11] to be
of particular importance for the alpha particle confinement in the Helias magnetic
couﬂgui‘at.ion.

As it is well known the V B drift can be defined as vyg = —p(VB x B)/B? [12].
In a stellarator case the magnetic field strength B depends on all space coordinates
r, 0, p. If, however, the guiding center orbit is not rational or, in other words, if
the orbit covers the magnetic surface after many toroidal turns uniformly, the angle
dependencies of this drift become averaged. For such orbits < vyp > depends only
on the radial coordinate r. Looking at the expression for the field strength (7) we
see that the radial dependence of the Fourier coefficient Cyg is responsible for this
drift. At high plasma f-s plasma diamagnetism causes magnetic field weakening in
the core region of the plasma column. The equilibrium calculations give a value of

about 10 % reduction in the plasma center at the maximal stable value of 8. We
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Liave modelled in our calculations the profile of Co,0(r) to be parabolic what is close
to the equilibrium one. ‘

Another source of the poloidal drift is the radial plasma electric field arisen from
the ambipolar nature of the transport processes. The correspondent perpendicular
drift velocity [12] is vg = —c(V® x B)/B?, where electric potential ® depends only
on the radial coordinate r. It is difficult to measure the profiles of the electric fields
experimentally, thus in predictions for a reactor one can rely only on the transport
calculations with many uncertainties. It is, however, to expect that the field should
be negative with the maximal amplitude of about 50-100 V/m for W-7AS.

It should be mentioned that if the magnetic field strength B decreases from the
edge to the center and the radial electric field is negative, the both drift velocities
have the same poloidal direction.

Now, after specifying the drifts the last equation expressing the condition for
the resonance interaction between a passing particle and the wave with the mode
numbers m, n can be solved numerically. The example of such solution for a reactor
case and for the lowest mode numbers m, n is presented in Fig. 5. Every point
(@, r/a) of the curves corresponds to a resonance between the alpha particle starting
on the radius » and having the normalized magnetic moment f, where ji = uB,/E.
The dotted curve above denotes the boundary between the pure passing orbits and
the majority of the trapped ones, for which the used in this section approach is not
applicable.

It is seen that co— and counter-going particles resonate with the different mode
numbers m, n. This result is apparent, because when the sign of v)| in equation (8)
has been changed, the drift velocity vy does not change its sign.

We will discuss these results in detail in the next section.

5 Resonant particle orbits

The interaction of the passing MeV ions in tokamaks with low frequency magnetic
perturbations (TAE’s) was investigated recently by Mynick [4]. It was found that
the drift surfaces form island-like structures if resonance occurs between the per-

turbation and the particle guiding center orbit. The formation of the islands in
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drift surfaces having the finite radial width, can cause enhanced immediate losses
of the encrgetic particles from the plasma, as well as can give rise to the stochastic
transport. :

The question arises whether such island structures exist in stellarators. The
condition of the resonant interaction particle-wave cannot be fulfilled permanently
by varying along the orbit magnetic field B in the principally three dimensional
configuration. On the other hand, the islands in the low-shear configurations typical
for the both modular stellarators under consideration are expected to have greater
radial extension, than in tokamaks.

To choose the orbit parameters for numerical calculation the solution of equation
(8) shown in Fig. 5 was used. Although they are not exact, the curves give an idea
where Lo search for resonances. Actually, such a picture contains a lot of information
concerning particle-wave interaction. First, one can see, whether the resonances are
in general expected for the given mode numbers in the given stellarator 2. If there
arc no solutions of the equation (8), the resonances between the passing particle
and the wave do not occur. Next, changing the plasma parameters such as density
and its profile, magnetic field strength B and the particle energy it is possible to
optimize the configuration without carrying out of detailed analysis. Third, the
influence of +-profiles on the radial distance between the neighbouring islands can
be studied. Finally, an interesting effect of resonance superposition can be predicted.
Crossings of the curves in Fig. 5a mean that the orbit can resonate with two modes
simultaneously, i. e. the orbit parameters fulfill the resonance conditions with two
modes (e. g., counter-going orbit with 7z = 0.7, r/a = 0.6 resonates with the modes
(m, n) = (—4,-3) and (6, 5) if they exist in the plasma).

It should be mentioned that the drift surface islands, unlike the magnetic islands,
do not arise exactly on the rational magnetic surfaces. In the Helias case the rota-
tional transform + varies from 0.845 at the center up to 0.96 at the plasma edge (s.
[Yig. 7). As it is seen from Fig. 5 only few of the curves shown there fall into this
interval, namely n/m = 6/7, 7/8 in Fig. 5a and n/m = —6/—17, —8/—9, —9/— 10

~

in Fig. 5b. Moreover, some of the resonant mode numbers m, n are far from the

2The same picture can be obtained for a tokamak
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values of .

This can be explained, if one looks at equation (8), which we rewrite in the

following way:
e Rovy i wR

b}
Wse 0 Vllse e 10U,

(9)
where +, is now the "resonance” rotational transform for the perturbation m, n. If
the perturbation were static, w = 0, it was the ordina,ry‘ case of stellarator magnetic
islands located on the rational magnetic surfaces. Propagation of the perturbation
and particle drifting with the velocity vy shift the resonance, and the resonance value
of the rotational transform differs, sometimes substantially, from the value + = n/m.

The most sensitive to the magnetic field perturbation should be the orbits located
in the phase space near the passing-trapped boundary. Although the magnetic
moment of the particle is conserved, the particle can cross the boundary and become
trapped due to radial drift if the island width is sufficiently large. Launching such
a particle we observe now, how the orbit changes by increasing amplitude of the
perturbation with the mode numbers (m, n) = (=2, -1).

The Poincaré plot in Fig. 6a shows two big islands formed by the drift surfaces of
the counter-going particle with i = 0.84 and the start radial coordinate r/a = 0.65.
The island boundaries are spread, because of the dependence of the particle parallel
velocity v on space coordinates, while the wave phase velocity was supposed to be
constant. In the vicinity of the passing-trapped boundary (dotted line in Fig. 6) this
effect is especially strong, since here the variations of the particle parallel velocity
are the greatest. The perturbation amplitude was taken to be §B/B = 10~*.

The same perturbation of the growing amplitude §B/B = 2 - 10~* apparently
pushes the passing orbit some more closer to the trapped boundary, island’s edge is
spreading, but the structure self is not still destroyed (Fig. 6b). If the perturbation
achieves the value of 5-107%, it is seen (Fig. 6c) that the Poincaré plot of the particle
orbit demonstrates no regularity more, the particle movement is rather stochastic.
The islands are destroyed, since the particle undergoes now reflections. The orbit has
become trapped, actually a superbanana one. The tips corresponding to reflections
are seen in Fig. 6d.

Comparison of the resonant and non-resonant interaction of the passing alpha
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particle with the wave demonstrates relatively weak influence of the non-resonant
perturbation on the particle orbit. In Fig. 8a an alpha particle with i = 0.5
and 7/a = 0.54 interact resonantly with a perturbation (m, n) = (=5, —4) of the
moderate amplitude 6B/B = 5 -107°. One can see a chain of five (| m |= 5) big
islands. Their boundaries are sharper, than in the previous case, since the location
of the particle in the phase space is farther from the passing-trapped boundary.

If we launch the same particle in the opposite direction, i. e. the sign of the
parallel velocity v is changed and other orbit parameters are not, it is no more the
resonance. Even by much higher perturbation amplitude of §B/B = 2.5 - 1072 the
radial deviation of the orbit is lower, than in the resonance case before.

Another interesting effect is superposition of two resonances. As it was also men-
tioned earlier, the crossing of the curves in Fig. 5 mean that the same particle can
be in resonance with two perturbations simultaneously, since these island structures
are not separated radially. If we have two island chains separated spatially, the
perturbations must be great enough to yield overlapping of the islands. In prin-
ciple, in the case of intersecting of the resonance curves the only condition on the
perturbation amplitudes is that the islands generally exist. By very low amplitudes
in the 3-D magnetic field the island structures cannot exist as radially extended
formations, since the boundary spreading becomes comparable with their widths,
and they can no longer be distinguished. This intuitive criterion is not strict, rather
illustrative, actually the better one is merging of the islands poloidally in Poincaré
maps representation. For the transport applications the first one seems, however,
to be more suitable.

The resonance superposition is represented in Fig. 9. It is chosen not the exact
coincidence of the resonances (curves intersections in Fig. 5), but two adjacent
ones, which can become coupled by means of orbits radial overlapping. Two narrow
islands (m, n) = (—2,—3) are produced by the perturbation of the amplitude
6B/B =2-10"" (Fig. 9a). In the next picture (Fig. 9b) the perturbation (m, n) =
(=3, —4) with the amplitude §B/B = 10™* generates three islands. In the both
cases the co-going orbit has the same parameters i = 0.7 and r/a = 0.77. If the

two perturbations are superposed, one finds now no island-like structure; neither
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the first, nor the second island chain can be seen. The radial width of the resulting
orbit seems to be almost unchanged. The islands destruction is dependent on the
phase shift between the perturbations, w.hich changes the result not qualitative but
quantitative.

We should mention that the drift surface islands are moving toroidally and
poloidally, that is why to stop them on the Poincaré maps it is used a "viewpoint”

moving with the particular island.

6 Resonant NBI-protons orbits in Wendelstein-7AS

Coherent MHD activity driven by the NBI ion population was recently observed
in the stellarator Wendelstein-7AS [3]. It seems very likely that those modes are
actually the global Alfvén waves. The typical fluctuation level of the magnetic field
is about 6B/B ~ 107%. No unusual effects concerning fast ion confinement was
experimentally observed. We discuss below briefly the possibilities for the particle-
wave resonances for the mentioned experimental conditions.

In the Helias reactor case the Alfvén velocity vy = B/+/4mn;m; in the plasma
core was about one half of the particle velocity v, = \/QE/_ma In the outer plasma
region the Alfvén velocity increases due to decreasing of the plasma density (Fig.
7b). These two values become equal somewhere near the plasma edge, that is why
there the resonance curves come close together for almost all the modes (Fig. 5).

Another situation is typical for the W-7AS plasma: Everywhere in the plasma the
Alfvén velocity is greater than v,,®> where v, is the NBI-proton velocity. If vy > v,
(the case of the high field B = 2.5T"), the particle-wave resonances can occur at the
mode numbers m, n so that m/n =~ +. To illustrate this statement we return to
equation (9) for the "resonance” value of the rotational transform +,, which can be
once more rewritten taking into account that w = vq (m+ —n)/R:

n whk. 1

= —_—
P om o vy 11—yl

Since the drift velocity vq is much smaller, than the Alfvén velocity vy, the difference

+ —n/m is always small except the case, where v ~ v4.

®In this section the resonances between the full-energy component (E = 45 keV) and the wave are discussed
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The typical values of the rotational transform in different regimes in W-7AS
(2.5 T) are between 0.34 and 0.58. Hence, the lowest mode numbers of the per-
turbation whish are expected to resonate with the passing orbits are the following:
(m, n) = (=3,-1);(=2,-1); (-5, —2); (=5, —3). Figure 10 shows the solutions of
the resonance equation (9) for different discharges [13].

If the Alfvén velocity is not very high and the rotational transform + is somewhere
in the plasma close to the lowest rational values, a set of resonances can occur in the
same discharge simultaneously (Fig. 10a). By higher v,4 and by the rotational trans-
form having no rational values inside the plasma, + # n/m, some of the resonances
disappear (Fig. 10b). Figure 10c shows the case of high Alfvén velocity, when the
resonances can appear only in the vicinity of the rational surfaces. The difference
between the resonances of the co— and counter-going particles is small now.

In the regimes with the field strength B = 1.25 T the Alfvén velocity is lower, then
on the axis v4 nearly achieves v,. Now, the resonances can occur in the broader range
of the wave mode numbers and of the orbit parameters , r/a (Fig. 11). Rotational
transform varies in these calculations from 0.27 up to 0.60 and all corresponding
resonances are represented. Even the modes with m = —5,—6, —7; n = —1 resonate
with the counter-going particles due to their drift shifting of the orbit from the field
line (Fig. 11a).

The i'esona,nce occuring is very sensitive against the assumptions concerning the
profiles of the rotational transform +, plasma radial electric field and the magnetic
field strength B(r). The last two determine particle drifts, which in turn bring
the particles in resonance. To predict or to analyze experimental results concern-
ing particle losses caused by the Alfvén modes one needs to know these plasma
characteristics.

Finally, we present the Poincaré maps of some resonance particle orbits chosen
according to the proposed procedure of resonance searching. Figure 12 shows the
orbits corresponding to the resonances of Fig. 10a. There are seen the chains of
five (Fig. 12a, (m, n) = (—5,—2)) islands for the co-going ion and of three islands
(Fig. 12b, (m, n) = (=3,-1)) for the counter-going one. The last of the pictures

(Fig. 12c) shows the resonance being very likely to the previous one, but located

16



on the outer branch of the curve in Fig. 10a. Two branches of the same resonance
are explained by the non-monotonic profile of the rotational transform. In principle,

the islands overlapping in this particular case would mean the sufficient condition

{or the orbit stochastization.

7 Collisionless transport

To treat the problem of fast particle collisionless transport in perturbed by the
wave field it is needed to calculate the width of the drift islands. We obtain in this
section on the basis of Hamilton’s equations of motion a simple formula allowing to
construct the diffusion coefficient. :

For this sake we look once more at the first of equations (6). The last term rights
is responsible for the deviation of the orbit from the magnetic surface due to poloidal
inhomogeneity of the unperturbed magnetic field. It can be dropped for simplicity,

then the equation looks like the following:

: 68A~||
Po=V| =~ —J7 = —

c 00

where 17 = —ng + m0 — wt + ¢ and ¢ is the initial mode phase. The normalized

e2h &@moy)sin7, (10)

mode amplitude & was defined in Sec. 1.

I'or our needs we can use instead of the exact parallel velocity v its mean value

V| =<Py + g = _/*'pa d'r>,

whicli is approximately constant in time for the particle located not very close to
the passing-trapped boundary in phase space. The magnetic perturbation in the
equation for the momentum (10) is represented through the derivative of the vector
potential, which is proportional to siny.

The unperturbed equations for the angles § and ¢ can be written out in the

V4
=ty
o

following way:

S
I

B

o=

6 =4,
where vy is the particle drift velocity: vy =|p 0B /0ps + € 0P /Ops |.
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Deriving the last equations under assumption that the right parts do not depend

on time, one obtains the expression for the mode phase n:
n= (k"v”—kJ_'vd—w)t+¢5a (11)

where k| = (m+ —n)/R and k; = m/r are the components of the wave vector.
The requirement of time independency of the right parts of the equations for 6 and
¢ means that the drift velocity vy varies weakly on the radial distance comparable
with the orbit width.
To proceed with the equation for the momentum py we expand siny in the vicinity

of the resonance surface r,:
(67)?

5

denotes the resonance drift surface, and the prime denotes differ-

sin# =~ sin 7y, + cos, n.6r + (ni’ cos ), — (77.)? sin ns)

»_n
S

The subscript
entiation over the normalized radius r/a.

We define the resonance according to Sec. 4 as the fulfillment of the following

condition:

ky(rs)v — ki(rs) va(rs) —w=0.
To chose correctly the mode phase ¢ it should be noted that p, on the resonance
surface is maximal and 0 is equal to zero. We chose the mode phase ¢ = 37 /2, then
the sign of py is positive when m, v are both positive.

The equation for the momentum takes now the form:
- eDRe r=r)t
P = == am) (1~(Wﬁ)2'(T)-

After replacing of py by the radial variable r through the expression 7 = 2cp;/eB,

one obtains the equation containing only the radial position of the guiding center
and time: -

ri=A(1-C#(r—r,)?), (12)
where 1 is the radial coordinate normalized over the plasma size a, the time ¢ is
normalized over the transit time 27R/v; A = 27 (v)/v) (6B/B)(R/a) and C =
(2mmuy/v)? £'? /2. The perturbation amplitude is introduced through

0B s R
—=am —.

B a
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The nonlinear equation (12) is expected to describe the evolution in time of the
radial position of the guiding center if the orbit is resonant to the wave. Starting
from the resonance surface the particle guiding center, firstly, moves away from it.
The phase shift 67 increases, since the resonance condition above is satisfied only
on the definite radius 7,. The perturbation of the magnetic field 6B, diverging the
particle from its unperturbed orbit, changes its spatially orientation. When the
phase 7 changes its value by 7 /2 the particle stops the movement outwards.

It is seen that by the large times the equation (12) describes the orbit not properly,
since the solution approaches the resonance surface r, asymptotically, what does not
happen in reality. The reason for that is the cut off of the higher terms in expanding
of siny.

We solve equation (12) analytically using an iterative method. By the short times

the second right-hand-side term can be neglected, and the solution looks like:
r?=r24+2At.

Constructing from this expression the initially dropped term ~ (r—r,)? one obtains
the final equation:

rr=A(l-

E

which can be solved analytically. The solution taken at the moment t* = (r,/A+/C)'/2,

AC
2

8

when the time derivative of the radial variable r in the last equation becomes zero,

gives the island half width:

ér = : (13)

"'!IO—'

5 a F
where 67 and r are normalized over a.

This simple formula gives correct scaling and quantitative values for the island
widths, what is confirmed by the numerical solution of equation (12). Computed
from the whole set of Hamilton’s equations (6) orbits demonstrate correspondence
with the derived formula as well.

It is interesting to note that the expression for the island half width obtained in

a different way by Mynick [4]:

4
I

(W]
-"\

B
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where (7 is a coeflicient smaller than a unity, shows almost the same result. For the
resonance it was supposed in [4] that m + = n, then replacing n through m+ makes
two formulas very similar,

I the orbit stochastization takes place, it is possible to estimate the collisionless
diffusion induced by the resonance interaction of the particles with the wave. The

time needed for the particle to move away from the resonance surface on a distance

of a half island width is

Substituting typical stellarator reactor parameters and taking §B/B of the order

10" yield the characteristic times of about 7/+/m transit times for the resonance

radius 7 = 0.5. That means that the particle makes a full period around the island

in time 7" ~ 4t*, which is roughly one order of magnitude longer than the transit
time. The diffusion coefficient can be constructed now as following:

h = (5,‘,,)2(12 % (E -@)3/2 ﬂa_z >

(27 R/v) t* a B R 32 \/m¢"’

where 7 is the fraction of the resonance particles. This expression gives very great

values for the diffusion of the resonance particles, D > v - 102 m?/s, in the plasma
regions where the orbits are stochastic.

Finally, we make a correction to formula (13) taking into consideration that not
only the shear, but also the radial dependence of the drift velocity vy influences the
island width. Returning to the expression for the mode phase (11), it is seen that
the derivative of the rotational transform +' over the dimensionless radius should be
replaced in (13) by the combination +' — (va/r)" (v R/a). As a rule, the derivative
in the second term here is negative, so, the poloidal drift can both increase and

decrease the island width dependent on the + radial profile.

8 Summary

A Hamiltonian guiding center code is applied to study single particle orbits in stel-
larators (Helias reactor and Wendelstein-7AS). The influence on these orbits of the

time-dependent perturbations of the magnetic field produced by the global Alfvén
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eigenmodes is investigated. Fourier representation of the plasma magnetic field and
model or calculated plasma electric field were used.

It was found that the resonant interaction between the passing particles and the
wave leads to the formation of the island-like structures on the drift surfaces. The
amplitude of the perturbation sufficient to create such islands is in the range of
6B/B ~ 1075 — 1074,

It was demonstrated elsewhere [11] that the finite plasma beta improves the
confinement of the thermonuclear alphas in a Helias reactor. Our orbit calculations
confirm this result. Diamagnetic effect produces non-zero radial gradient V,B,
which in turn gives rise to a poloidal drift. This drift closes initially poloidally and
toroidally blocked orbits deeply trapped in the main well (s. Sec. 3 and Fig. 2).
The drilt caused by the radial electric field plays a similar role. The resulting effect
depends on the mutual orientation of the both drifts. The non-resonant magnetic
fluctuations of the amplitudes §B/B =~ 10~* do not affect substantially these orbits.
It should be mentioned that the V B-drift can be inverted by the inverting of the
current in the field coils, whereas the E x B-drift cannot. This fact gives a possibility
to shift some of the resonances from the plasma.

The mmode numbers of the perturbations, which resonate with the passing orbits
were calculated. They depend on the relation between the Alfvén velocity v4 and
the particle velocity v'. If v4 > v, then the resonances occur only in the vicinity of
the "resonant” values of the rotational transform +, = n/m. If v4 <v, the passing
particle can resonantly interact with the broader range of the modes through the
poloidal component of its drift motion. Co- and counter-going particles can now
resonate with different modes.

Allvén-like perturbations modifying the orbits can cause immediate particle losses
if the island is located near the plasma edge and its width is large enough to intersect
the plasma boundary. The particles located near the passing-trapped boundary can
be pushed by the resonance fluctuations over it and become superbanana.

Under some circumstances the resonance condition can be fulfilled for two differ-
ent modes at the same radial position. In this case the resonant pahrti-cle interacts

with these modes simultaneously, since the islands overlap even by small perturba-
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tion amplitudes. After superposing of such two single resonant perturbations the
island structure exists no longer. The result depends on the relative phase shift
between the perturbations.

The threshold of the stochasticity onset in the resonance particle motion is de-
pendent on the particle pitch and seems to be above the perturbation amplitude of
6B/ DB ~ 107" for the majority of the passing particles. Non-resonant passing orbits
are weakly influenced by the perturbations of the amplitudes considered. Because
of that, the criterion of the islands radial overlapping in configurational space is not
sufficient for the orbit stochastization. It should be supplemented by the require-
ment on the value of the magnetic moment f, which must enable this particle to
interact resonantly with the both perturbations.

The magnetic field shear plays an important role in the arising of the island
structures. The radial size of the islands is larger in the systems with low +'. However,
by the experimentally observed perturbation amplitudes and experimentally realized
+-profiles they are smaller than the plasma radius. Hence, the anomalous losses can
be caused mainly by the resonance overlapping and following orbit stochastization.
On the other hand, in the low-shear stellarators, unlike tokamaks the number of the
island chains in the plasma is smaller, what prevents in many cases their resonance
interaction. Moreover, if v4 > v, as for W-TAS, avoiding of the magnetic islands in
the ])lasﬁla leads to disappearing of almost all drift surface islands as well.

The resonance interaction between the particles and the waves is sensitive to the
plasma -e}ectric field and profile of the rotational transform. Thus, the detailed anal-
ysis ol the orbits resonance behaviour in W-TAS and of the energetic particle losses
as well can be carried out on the basis of knowing of these plasma characteristics.

It was found a formula for the island width coinciding with that obtained earlier
[4]. The particle needs typically more than ten transit times to close its orbit around
the island. This period can be used as a time step to estimate the coefficient of the

collisionless diffusion of the stochastic orbits.
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Figure captions

I'ig. 1. Normalized Fourier components of the magnetic field strength.
a) Helias reactor [9]; b) Wendelstein-7AS.

Iig. 2. Isoline plots of | B | on a single flux surface for a Helias reactor:

a) {ull set of Fourier harmonics [9]; b) model used for the orbit calculations.

IFig. 3. Isoline plots of | B | on a single flux surface for the stellarator Wendelstein-
TAS:

a) VMEC results [10]; b) model used in our calculations of the particle orbits.

Ilig. 4. The illustration of a resonance between a passing particle with the
parallel velocity v drifting poloidally with the velocity us and a wave with the

mode numbers m, n < 0. u,, is the phase velocity of the wave.

Iig. 5. The solution.of the approximate equation (8) for the resonance conditions
alpha particle-wave (Helias reactor). The point on the curve with the coordinates
(ft, 7/a) denotes the particle orbit resonating with the mode m, n, whose values
correspond to this curve.

a) counter-going orbits, b) co-going-orbits.

Fig. - 6. Poincaré plots (a-c) and an orbit projection on the plane ¢ = const
(d) of the 3.5 MeV counter-passing alpha particle in the Helias reactor. Parti-
cle magnetic moment z = 0.84, radial starting point r/a = 0.65, mode numbers
(m, n) = (-2,-1).

The perturbation amplitudes a) §B/B = 107%; b) 6B/B =2-107%; c-d) éB/B =

il

IYig. 7. Profiles of the rotational transform a) and of the Alfvén velocity (arbitrary

units) b) in the Helias reactor.

I"ig. 8. Resonance a) and non-resonance b) interaction between the passing
particle and the wave. The particle parameters differs only in the sign of ).

The perturbation amplitudes: a) éB/B =5-107% b) 6B/B = 2.5-1072,

Fig. 9. Coupling of two resonances (co-going alpha particle with i = 0.7) located
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radially close to each other: a) perturbation (m, n) = (=2,-3), §B/B =2-107%
b) perturbation (m, n) = (-3,—4), 6B/B = 1074,

c¢) the both perturbations simultaneousfy. The island structure is destroyed.

I'ig. 10. Resonance curves for the interaction of 45 keV protons and Alfvén
perturbation in W-TAS (B = 2.5T). Solid curves — co-going particles; dashed
curves — éounter-going particles. (+-profiles are taken from Ref. 12)

a) + = 0.345 — 0.405; v4(0)/v, = 1.45.
b) + = 0.345 — 0.382; v4(0)/v, = 1.55.
c) High « case: + = 0.50 — 0.58; v4(0)/v, = 1.81.

Ilig. 11. Resonance curves for the interaction of 45 keV protons and Alfvén
perturbation in W-TAS (B = 1.25T7). Solid curves — co-going particles; dashed
curves — counter-going particles. (+-profiles are taken from Ref. 12)

a) Low + case: + = 0.27 — 0.283; v4(0)/v, = 1.06.
b) High + case: + = 0.52 — 0.60; v4(0)/v, = 1.06.
c) High + case: + = 0.51 — 0.57; v4(0)/v, = 1.22.

Fig. 12. The 45 keV proton resonance orbits in W-7AS.
a) Co-going particle with g = 0.5, (m, n) = (-5,-2), 6B/B =107*.
b) Counter-going orbit with z = 0.5, (m, n) = (=3,-1),r/a = 0.6, §B/B = 2-10~*.

¢) The previous case, but r/a = 0.77.
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